Rheology of clustering protein solutions.

نویسندگان

  • Vishnu L Dharmaraj
  • P Douglas Godfrin
  • Yun Liu
  • Steven D Hudson
چکیده

High viscosity is a major challenge with protein therapeutics at extremely high concentrations. To overcome this obstacle, it is essential to understand the relationship between the concentration of a protein solution and its viscosity as a function of shear rate and temperature. Here, lysozyme is a model charged globular protein having both short-ranged attraction (SA) and long-ranged repulsion (LR) that promote the formation of dynamic clusters at high concentrations. We report viscosity measurements from a micro-capillary rheometer (using only several microliters of solution) over a wide range of lysozyme solution concentrations, shear rates, and temperatures. Solution structural relaxation dynamics are also probed by dynamic light scattering (DLS). As a result of lysozyme's SALR interactions, the viscosity increased dramatically across all shear rates with increasing concentration and decreasing temperature. While most of the solutions exhibited Newtonian behavior, shear thinning was exhibited at the highest concentration (480 g/l) and lowest temperatures at shear rates above approximately 10(4 )s(-1). The onset shear rate for thinning and a structural relaxation rate estimated from a slow-mode measured by DLS are compared. These measurements provide insights into the properties of protein solutions and their microscopic structural origins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.

Macroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interaction...

متن کامل

Interfacial Rheology of Globular Proteins

Protein-surfactant mixtures appear in many industrial and biological applications. Indeed, a fluid as vital as blood contains a mixture of serum albumin proteins with various other smaller surface-active components. Proteins and other surface active molecules are often adsorbed at an air-liquid or liquid-liquid interface due to favorable thermodynamics, and these interfaces play a role in such ...

متن کامل

Rheology of biopolymer solutions and gels.

Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio) polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biop...

متن کامل

Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions.

A combination of sensitive rotational rheometry and surface rheometry with a double-wall ring were used to identify the origins of the viscosity increase at low shear rates in protein solutions. The rheology of two high molecular weight proteins is discussed: Bovine Serum Albumin (BSA) in a Phosphate Buffered Saline solution and an IgG1 monoclonal antibody (mAb) in a formulation buffer containi...

متن کامل

Strong Flows of Viscoelastic Wormlike Micelle Solutions

The unique rheological properties of viscoelastic wormlike micelle solutions have led to their broad use as rheological modifiers in consumer products such as paints, detergents, pharmaceuticals, lubricants and emulsifiers. In addition, micelle solutions have also become increasingly important in a wide range of industrial and commercial applications including agrochemical spraying, inkjet prin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2016